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Conformal Invariance and Gravitational Coupling
in Quantum Field Theory
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We study the quantum constraints of a conformal invariant action for a scalar
field. For this purpose we briefly present a reformulation of the duality principle
advanced earlier in the context of generally covariant quantum field theory, and
apply it to examine the finite structure of the quantum constraints. This structure
is shown to admit a dimensional coupling (a coupling mediated by a dimensional
coupling parameter) of states to gravity. Invariance breaking is introduced by
defining a preferred configuration of dynamical variables in terms of the large-
scale characteristics of the universe. In this configuration a close relationship
between the quantum constraints and the Einstein equations is established.

1. INTRODUCTION

There is an open possibility that the gravitational coupling of matter may
have its origin in an actual invariance-breaking effect of some fundamental

symmetry of nature. It seems clear that the establishment of such a possibility

would unquestionably improve greatly our views about the nature of gravity.

Concerning a theory of this type, there is an important remark indicating

the kind of symmetry which may be of significance. In fact, since the ordinary
coupling of matter to gravity is a dimensional coupling (mediated, namely,

by the gravitational constant), those local transformations which could change

the strength of this dimensional coupling are expected to play a key role. As

a consequence one may consider the principle of conformal invariance as

a fundamental invariance principle. The corresponding transformations are

viewed to affect the local standards of length and time in a measurement
process by a position-dependent multiplicative factor V (x) applied to them.
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The standard of mass changes by the inverse factor (the velocity of light and

the Planck constant are unaffected). The corresponding effect on the space-

time metric can be represented by the law4

g m n ® V 2(x) g m n (1)

The factor V (x) is assumed to be an arbitrary, positive, and smooth space-

time function. Deser (1970) applies the principle of conformal invariance5

and a cosmological invariance-breaking effect to a classical scalar field, and

shows that the resulting form of the gravitational coupling of matter is as
suggested by general relativity. In more specific terms, Deser’ s remarkable

result predicts the nature of gravitational coupling from an invariance-break-

ing effect which is significantly related to the presence of background (cosmic)

matter distributed in a finite universe.

In trying to understand the nature of the invariance-breaking effect, it

will evidently be useful to find out how the quantum theory tries to achieve
this, because the conformal transformations may well require a distinct inter-

pretation at the quantum level. The purpose of the present paper is to undertake

a consideration of this issue. We emphasize that this consideration is still

far from being complete, but we hope that the paper can stimulate further

investigations in this direction.
The organization of this paper is as follows: In Section 2 we present

the model in terms of a conformal invariant action functional for a classical

scalar field. In Section 3 we replace the classical scalar field by a quantum

field and derive the general structure of quantum constraints imposed on

physical states. To avoid the singular character of the latter constraints a

duality principle is applied. The resulting finite structure is shown in Section
5 to admit a dimensional coupling of the states to gravity in the form of a

scalar tensor theory. To arrive at this result we use restrictive conditions of

direct physical meaning, which in particular provide a way to interpret the

conformal transformations at the quantum level. Finally, the correspondence

of quantum constraints with the Einstein equations is established by introduc-

ing an invariance-breaking effect.

2. THE MODEL

We shall consider a system consisting of a real scalar field f and the

gravitational field, described by an action functional of the form

4 For a general discussion of conformal invariance in the gravitational context see Beckenstein
and Meisel (1980).

5 Note that conformal invariance is more general than scale invariance which is used in Deser ’ s
paper. If scale invariance is characterized by vanishing of the trace of the energy-momentum
tensor, conformal invariance implies scale invariance in the absence of dimensional parameters
in the theory.



Conformal Invariance and Gravitational Coupling in QFT 1255

S [ f ] 5 2 1±2 # d 4x ! 2 g (g a b - a f - b f 1 1±6 R f 2) (2)

where R is the scalar curvature. Note that there is no contribution of the free

gravitational field to the action.
Variation with respect to f leads to the equation

(N 2 1±6 R) f 5 0 (3)

and that with respect to g m n results in a zero constraint on the so-called

conformal energy-momentum tensor, namely

T m n [ f ] 5 0 (4)

with6

T m n [ f ] 5 [2±3 ¹ m f ¹ n f 2 1±6 g m n ¹ a f ¹ f a f ] 2 1±3 ( f ¹ m ¹ n f (5)

2 g m n f ¹ a ¹ a f ) 1 1±6 f 2G m n

Here G m n 5 R m n 2 1±2 g m n R is the Einstein tensor; ¹ m indicates the covariant

derivatives. One should recognize that the latter constraint is not independent
of equation (2). Indeed, taking the trace of (3), one gets

T a
a [ f ] 5 f (N 2 1±6 R) f 5 0 (6)

from which equation (3) can be derived. This feature is a consequence of
the conformal symmetry of the action (2), which leaves us one degree of

freedom unspecified. Indeed the action (2) is invariant under the confor-

mal transformations

f ª V 2 1(x) f , g m n ª V 2(x)g m n (7)

from which it follows that various frames can be assigned to a theory defined

by the action (2) depending on the particular configuration one chooses for

the scalar field f . Different configurations can be considered as corresponding

to different choices of the local standards of units. Therefore, different frames

can alternatively be separated by the local values of the dimensional quantities

that enter the theory.
Since the action (2) contains no absolute scale of length (a length which

can be considered as constant in any conformal frame), there is nothing

which incorporates a distinction between the standards of units. Therefore,

6 Some authors write T m n [ f ] in the alternative form

T m n [ f ] 5 [ ¹ m f ¹ n f 2 1±2 g m n ¹ a f ¹ a f ] 1 1±6 (g m n N 2 ¹ m ¹ n ) f 2 1 1±6 f 2G m n

For the application of the point splitting, see next section; this form, however, is not the
convenient one, because it involves derivatives of f 2.
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all configurations of f must be taken as physically equivalent. However, an

important new feature arises at the quantum level if the nature of gravitational

coupling is legitimately attributed to cosmological boundary conditions, in
accordance with which the physical states are required to incorporate the

corresponding form of large-scale correlations. Thus the possibility arises to

assign a finite cosmological range to these correlations, measured by an

absolute scale of length, namely the length corresponding to the physical

size of the universe. As a result a preferred frame can be singled out at the

quantum level of the theory.
To establish the possibility of this scenario, we shall consider f as a

quantum field and proceed to extract the admissible form of the quantum

constraints to be imposed on f .

3. QUANTUM CONSTRAINTS

If f is considered as a quantum field, the constraints (4) can be replaced

by a set of quantum constraints to be imposed on the physically admissible

states | v & of f , namely

T m n [ f ] | v & 5 0 (8)

We shall deal with a particularly useful version of this equation in the form
of constraints to be imposed on the relevant expectation values, namely

^ v | T m n [ f ] | v & 5 0 (9)

In general, this equation corresponds to a set of singular quantum constraints,

because the operator T m n [ f ] involves a singular operation, namely the product

of the field operator f at the same space-time point. The nature of the

singularity is related to the short-distance singularity of the states. More
specifically, we may use a symmetric splitting of the point x into two different

neighboring points and write the constraints (9) in the form7

lim
x8 ® x

D m n (x, x8) ^ v | { f (x), f (x8)} | v & 5 0 (10)

Here D m n (x, x8) is the differential operator

D m n (x, x8) 5 1±6 (g n 8
n ¹ m ¹ n 8 1 g m 8

m ¹ m 8 ¹ n ) 2
1

12 g m n g
a 8
a ¹ a 8 ¹ a

2
1

12 ( ¹ m ¹ n 1 g m 8
m g n 8

n ¹ m 8 ¹ n 8) (11)

1
1

12 g m n ( ¹ a ¹ a 1 ¹ a 8 ¹ a 8) 1
1

12 G m n

7 The procedure corresponds to a well-known procedure used in quantum field theory in curved
space in the context of stress tensor renormalization; see, e.g., Wald (1975, 1978).
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and g n 8
m is the bivector of parallel transport. This expression relates the charac-

ter of the operator T m n [ f ] to the local structure of the symmetric two-point

function.
Our objective is now to convert the constraints (10) into an admissible

finite form. For this purpose we first need to introduce a duality principle in

close relation to the work of Salehi (1997).

4. THE PRINCIPLE OF COMMUTANT DUALITY

The formulation of this principle originates from the desire to incorporate

the distinct character of large-scale (dislocalized) correlations in the gravita-

tional context into the short-distance characteristics of the physical representa-

tions of the algebra of local observables generated by a quantized field. In

conventional quantum field theory one usually assumes that correlations
at arbitrary large distances have no actual influences on the short-distance

characteristics of the representations. In a qualitative way it is immediately

evident that this idealized setting gives rise to a corresponding conceptual

shortcoming concerning the specification of the local characteristics of the

representations in an infinitesimal domain. The appearance of short-distance
singularities is the most dramatic aspect of such a conceptual shortcoming.

If one insists on this idealized setting, a satisfactory removal of the difficulty

cannot be achieved. However, to improve the predictive power of quantum

field theory, kinematical criteria which control the nature of the singularities

involved are usually used. We may mention, for example, the scaling criterion

advanced in Haag et al. (1984) and Fredenhagen and Haag (19 ), which
asserts that, in an infinitesimal neighborhood of a point, the local singularity

of states in a physical representation should have the closest admissible

correspondence to the singularity structure of the vacuum state of a free

massless field in flat space. Such a criterion, important as it is for characteriz-

ing the kinematical level of the theory, is incomplete for the purpose of a

dynamical incorporation of the gravitational coupling of a quantized field.
In fact, it is one of the structural implication of that coupling, as furnished

by the principle of general covariance, that an inescapable link must exit

between the local (infinitesimal) characteristics of physical representations

and large- scale correlations. The principle of commutant-duality (Salehi,

1997) makes a specific assumption to incorporate such a link. We present

first a general formulation of this principle using the standard notations of
the algebraic approach to quantum field theory.8

8 We assume that the reader is familiar with the algebraic approach to quantum field theory
(Haag, 1992).
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We recall that in the algebraic approach the intrinsic mathematical

description of quantum field theory is based on the correspondence between

every open region 2 in space-time and an involutive algebra !(2), the algebra
generated by local observables which can be measured in 2. Given such a

correspondence, the total (quasilocal) algebra of observables !obs can be

identified with the set-theoretic union of all local algebras !(2), namely

!obs 5 ø !(2) (12)

Consider now a sequence of space-time regions 2n shrinking to a point x as
n ® ` . For any 2n consider the associated local algebra of observables !(2n).

The principle of commutant duality assumes that in the limit n ® ` one

should have an exact correspondence between !(2n) and the ª physicalº

commutant of the total (quasilocal) algebra of local observables !obs.

The attribute ª physicalº means that the commutant should properly be

taken as being defined with respect to an algebra larger than the total algebra
of local observables. Denoting the former by ! ` , we should have the inclusion

!obs , ! ` (13)

Concerning the choice of the algebra ! ` , an assumption of general

nature is made. It is required (Salehi, 1997) that ! ` should essentially incorpo-
rate new dislocalized elements (elements which do not arise as images of

local observation procedures) in such a way as to make the total algebra of

local observables !obs properly correlated with dislocalized properties in

space-time. This requirement can be converted into appropriate restrictions

imposed on the choice of the physical states:

Let us imagine that a physical system can basically monitor all conceiv-
able dislocalized correlations in space-time. Then it should properly be

described by a state, a positive linear functional, over the large algebra ! ` .

Given such a state over ! ` , we get by the GNS construction (Haag, 1962)

a representation of ! ` by an operator algebra acting on a Hilbert space in

which the state is represented by a cyclic vector V . We shall require that

the vector V shall be a separating vector for the total algebra of local observ-
ables. This means that V cannot be annihilated by elements of !obs. In this

way the entire net of algebras of local observables becomes correlated with

dislocalised elements of its physical commutant in the large algebra ! ` .

However, in the quantum field theory there is another level of description

of a physical system, namely the conventional one in which a physical system

is ideally described by a state over the total algebra of local observables
!obs. In reality, the more information which should, in principle, be available

in the form of correlations between local observables in !obs and the dislocali-

sed elements of ! ` has a significant effect on the nature of the conventional

description of a physical system in quantum field theory. From the principle
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of commutant duality we obtain the specific treatment of this effect. In fact,

using the natural inclusion properly !(2) , !obs for an arbitrary space-time

region 2, it is a simple matter to infer from the commutant duality that the
commutant of !obs with respect to ! ` can be reduced to a commutative

algebra lying in the center of !(2). Thus, in essence, the principle of commu-

tant duality asserts that a transition can be made from the physical commutant

of !obs to a commutative algebra which lies in the center of any local algebra

!(2). In this way, the dislocalized correlations between the entire net of

local algebras !(2) and the elements of the physical commutant of !obs are
transfered into ª classicalº properties.

It should clearly be understood that this latter statement corresponds to

a natural consistency requirement within the conventional description of a

physical system according to which a physical system is described by a state

over the algebra !obs. Since such states cannot monitor all conceivable

dislocalized properties in the large algebra ! ` , we should, in fact, reject the
possibility of making a distinction between different states over !obs by the

elements of the physical commutant, a feature which obviates the need for

a transition between the elements of the physical commutant to classical

quantities in any space-time region. This remark shows that the adoption of

the principle of commutant duality imposes a necessary restriction on the
nature of the conventional description of a physical system in quantum

field theory.

We should, however, emphasize the essential new ingredient which

is introduced by the principle of commutant duality into the conventional

description of a physical systems in quantum field theory. In fact, the distinct

transition of the physical commutant of !obs into classical properties which
is demanded by that principle implies that the strict localization of any local

observable at an arbitrary point of the space-time can be reduced to a state-

independent classical quantity which is generated by dislocalized properties

of space-time. As a consequence, the particular value of such a quantity in

a physical representation of !obs cannot arbitrarily be prescribed, but must

depend on the actual large-scale boundary conditions imposed on that repre-
sentation; it is a distinct superselection quantity that enters the dynamical

description of local physics in an infinitesimal neighborhood of a point. In

this way the principle of commutant duality incorporates a vital correlation

between the infinitesimal characteristics of a physical representation of !obs

and the large-scale boundary conditions characterizing that representation in

the large.

5. FINITE STRUCTURE OF QUANTUM CONSTRAINTS

Returning to our primary objective, namely the derivation of the admissi-

ble finite structure of the constraints (10), we apply now the principle of
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commutant duality to derive the gravitational coupling of the quantum field

f . The explicit use of the commutant duality has an important consequence.

In fact, if we apply the commutant duality to a representation of the algebra
! f

obs, the total algebra of local observables generated by the quantum field

f , we can reduce the operator product f (x) f (x8) for a sufficiently small

separation of the points x and x8 to a classical quantity which is genarated

by the particular form of the large-scale boundary conditions imposed on

that representation. Thus, it follows from the application of the commutant

duality that, given a representation of ! f
obs, the dimensional quantity resulting

from the coincidence limit

lim
x8 ® x

^ v | f (x) f (x8) | v & (14)

can be as taken as the parameter of the dimensional coupling of states to the

large-scale boundary conditions defining that representation in the large.
However, to accurately attribute this coupling to the gravitational coupling,

we must first look for a natural rule connecting a change of the physical

situation in the large to the local action of the conformal transformations.

The need for such a rule arises from the observation that the parameter of

the dimensional coupling of states over ! f
obs to the large-scale boundary

conditions, which is taken as embodied in the coincidence limit (14), will in

general change if a transition is made from a unitary class of representations

of ! f
obs to another one with a different set of large-scale boundary conditions.

On the other hand, since a dimensional coupling parameter will also be

affected by the action of the conformal transformations, such a transition

between inequivalent representations should be expected to be linked with
a corresponding conformal transformation affecting the coincidence limit

(14). Thus we may legitimately look for a natural rule connecting a change

of the large-scale boundary conditions to the local action of conformal

transformations.

In accordance with this observation, different (unitary inequivalent)

representations of ! f
obs should be related by the local action of conformal

transformations on the quantity defined by the coincidence limit (14). The

accurate formulation of the rule is the following: Given a representation of

! f
obs, we define, in the first place, a c-number field c , the universal one-

point function of the quantum field f in that representation, in terms of the

coincidence limit (14) by the condition

lim
x8 ® x

^ v | f (x) f (x8) | v & 5 c 2(x) (15)

In the second place, we relate the arbitrariness in choosing the representation

of ! f
obs from which one starts to the freedom to change the configuration of
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the universal one-point function c and the metric tensor g m n according to

the law

c ® V 2 1(x) c , g m n ® V 2(x)g m n (16)

which is the analogue of (7). This is a statement about the actual description

of the conformal transformations in the model under consideration.

Let us now define the (two-point) correlation function

^ v | f (x) f (x8) | v & c 5 ^ v | f (x) f (x8) | v & 2 c (x) c (x8) (17)

In terms of c and ^ v | f (x) f (x8) | v & c the quantum constraints (10) can be

written as

G m n 5 2 6 c 2 2[Q m n { c } 1 S m n { v }] (18)

where

Q m n { c } 5 [2±3 ¹ m c ¹ m c 2 1±6 g m n ¹ a c ¹ a c ] 2 1±3 ( c ¹ m ¹ n c (19)

2 g m n c ¹ a ¹ a c )

and

S m n { v } 5 lim
x8 ® x

DÄ m n (x, x8) ^ v | { f (x) f (x8)} | v & c (20)

In the last equation DÄ m n (x, x) is given by the differential operator (11) without

the G m n term. These equations describe the coupling of the states in a represen-
tation with the universal boundary conditions defining that representation.

We infer that the latter coupling takes the form of a gravitational coupling

in a scalar tensor theory, the tensor S m n { v } describing the state-dependent

distribution of matter. One should recognize, however, that the nature of the

tensor S m n { v } is still unspecified. Our objective is now to derive a general
restriction to be imposed on that tensor from an invariance-breaking argument.

6. INVARIANCE-BREAKING EFFECT

Using the principle of commutant duality, it was shown that for the two-

point function the short-distance limit (14) in a physical representation of

! f
obs can be characterized in terms of a universal one-point function c , the

latter being generated by the dynamical influence of the large-scale boundary
conditions imposed on that representation. As a consistency requirement, we

have proposed a correspondence between a conformal transformation affect-

ing the universal one-point function c and a transition between inequivalent

global representations of the algebra ! f
obs.



1262 Salehi

If no distinction could be made between different inequivalent global

representations of ! f
obs from the physical point of view, all conformally

related configurations of c should be considered as equivalent. However,
such a distinction can actually be made by the boundary conditions of the

universe:

Consider, namely, that class of representations of ! f
obs for which the

field c is assumed not to be generated by the global boundary conditions in

nearby regions9 of space-time, but only by the asymptotic (cosmological)

tail of boundary conditions at very distant regions of space-time.10 This class
of representations, which is called in the following the absolute class, is

distinctly preferred, because the corresponding configuration of c is sensitive

only to cosmological properties of space-time which are fixed in a universal

manner. In particular, those conformal transformations which are connected

to a change of the global boundary conditions in nearby regions of space-

time will not affect the function c . This function must therefore be in its
absolute (constant in any conformal frame) configuration. The existence of

such an absolute configuration of c may be considered as an invariance-

breaking effect.

Our objective now is to estimate the value of c in its absolute configura-

tion. First we legitimately require that the dynamical excitation of c in the
absolute configuration should be connected to larger-scale characteristics of

the universe. To accurately use this requirement, let us take the trace of the

equations (18) to obtain

(N 2 1±6 R 1 c 2 2S a
a { v }) c 5 0 (21)

This equation shows that the term c 2 2S a
a { v } acts as a (dynamical) mass term

which characterizes the massive excitations of c . Since the dynamical excita-

tions of c in the absolute configuration should be connected to large-scale

characteristics of the universe, the mass term c 2 2S a
a { v } should be measured

by the cosmological constant L . This results in a relation of the type

c 2 2 , L /S a
a { v } (22)

Correspondingly, we should measure S a
a { v } by the energy density of the

larger-scale distribution of matter. Now approximating the cosmological con-

stant by its observational bound L obs , L 2 2, where L is the size of the

universe (L , 1029 cm), and taking into account the remarkable empirical

fact that the energy density of the large-scale distribution of matter in the
universe coincides (in a rough order-of-magnitude manner only) with the

9 ª Nearby regionsº means distant regions without extension to cosmological distances.
10 This limitation gives an expression to Mach’ s principle. For a classical exposition of this

principle see Brans and Dicke (1961).
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contribution of L obs to the vacuum energy density, we get in the absolute

configuration c the remarkable correspondence between c 2 and the inverse

value of the gravitational constant (8 p G) 2 1. As a consequence, equations
(18) reduce to a set of the Einstein equations.

7. CONCLUDING REMARKS

We have seen that the absolute configuration of c leads to a reasonable

prediction of the dynamical coupling of states to gravity. This was possible
because the latter configuration was established in the absolute class of

representations of the algebra ! f
obs, in which c depends only on the asymptotic

tail of boundary conditions at distant regions of space-time.

It should be realized that there are a variety of unitarily inequivalent

representations in the absolute class of representations of ! f
obs. In the present

theory different representations in the absolute class will differ with respect
to global boundary conditions in nearby regions of space-time. But they all

coincide in the configuration of c .

In general if a transition is made between different representations in

the absolute class, the physical content of the theory may change. This effect

may be of particular importance in studying the still-unsolved problem of
backreaction (Salehi, 1992) that is the response of the metric to a particular

configuration of nearby boundary conditions. The exploration of this aspect

is an interesting subject which requires considerable clarification. We hope

to address the issue in a future publication.
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